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THE GENERALIZED PROBLEM OF BREAKUP OF AN ARBITRARY DISCONTINUITY* 

I.S. MEN'SHOV 

The problem of breakup of an arbitrary discontinuity in a gas (the 
Riemann problem) is generalized to the case when an arbitrary, in 
general space-variable, distribution of the gas-dynamic parameters is 
given on both sides of the discontinuity at the initial instant of time 
(the generalized Riemann problem /l/l. The solvability of this, in 
general non-selfsimilar, model is proved and analytical formulas are 
found for its solution in a small neighbourhood of the points of 
discontinuity in the I, t plane, where x is the space coordinate and t 
is the time. 

A complete analysis of the selfsimilar Riemann problem was 
developed by Kochin /2/. The generalized Riemann problem is in general 
non-selfsimilar and does not admit of a simple analytical solution over 
the entire I, t plane. However, some analytical solutions may be 
obtained for this problem. Thus, for a linear initial distribution, 
analytical formulas were obtained in /l/ for the values of the 
derivatives of the gas-dynamic parameters along the contact 
discontinuity for t= 0. 

Below, the generalized Riemann problem is considered in a small neighbourhood of the 
point of discontinuity in the (x,1) plane and its analytical solution is constructed to a 
first approximation in 8= l/zP+tL. Analytical formulas for the trajectories of discontinuities 
are obtained in the same approximation. 

1. The generalized Riemann problem is reducible to the following Cauchy problem for one- 
dimensional non-stationary equations of gas d,ynamics: 

(wh + kw + F), = 0 (1.1) 

‘p = (1, u, e + V&)T, 

F = (0. PI P#‘, P’P CO,4 = Qz (x1, 5 > o 
i 

cp,cG s<o 

where u, p and e are the velocity, density, 
is the pressure and % (5) and cpz (a) 

and the specific internal energy, P =p(p, e) 
are functions which are differentiable in the domain 

of definition, which specify the initial parameter distribution. 
We will rewrite the system of Eqs.(l.l) in characteristic form, introducing the specific 
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entropy s = s (p, 4, the velocity of sound a = Q (P, e), the ma.ss velocity of sound c = pa, 
and also new variables 0 and h- related to x and t by 8 = l/m and h = zt-I: 

cD,u + D+p = 0, CD-U - D-p = 0, Ds = 0 

DE m= --;_(-,[-g+(&+ d+-&] 
D*=~(u~a-hi[~+(~+~)e~] 

(1.2) 

The solution of the system of Eqs.(1.2) to within 0 W) is sought in the form 

u = u. (v + eu, (a), P = p. (a) + e p1 (1) 
s = so v.) + es, 0~ 

(1.3) 

Considering the zeroth approximation with respect to 8, we find that the function with 
subscript zero in (1.3) may be of one of the following three types: either u,,,pO,sO= coast, 
which corresponds to a homogeneous constant flow, or it may satisfy the relationships 

Ug T a, = A, couo~ 2 PO’ = 0, so = const (1.4) 

which corresponds to a rarefaction wave (the upper sign is for a wave propagating to the left 
and the lower sign is for a wave propagating to the right); the prime denotes derivatives 
with respect to h. 

Given the zeroth-approximation solution, we will consider the first approximation in 0 
for each of the three types of solutions. Unless otherwise stated, we denote the first terms 
(the zeroth approximation) by the subscript 0 and the coefficients of f3 (the first approxi- 
mation) by the subscript 1 in expansions of the form (1.3). 

Constant flow. Integrating the corresponding system of equations in the first approxi- 
mation 

coD+*ul -k D+*p, = 0, c,D_*u, - D_*p, = 0, D*s = 0 (1.5) 

we obtain the general solution 

(1.6) 

where Cl, C,, C, are arbitrary constants. 

Rarefaction wave. To be specific, we will consider the case when the wave propagates 
to the right. Then the system of equations in the first approximation takes the form 

cdU~ + PI + (UI + a,) hu,’ + &‘) = 0, D*sl z 0 

D_*ul- $ D_*P, == [(T), p1 + (G), sl] po’ 

(1.7) 

The operators Dk* and D* have the same form as in (1.5), and the variables with sub- 
script zero (in particular, those in the operators D*and D+*) are functions of h which 
satisfy relationships (1.4) with the lower sign. 

Integration of the second equation in (1.7) gives 

where C, is an arbitrary constant. Seeing that 
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we can express u1 from the first equation in (1.7) 

~1 = G (A) PI + -G (A) ~1 (1.9) 

K,(I)=-+& L,(h)=-& --(a 

Using this relationship to eliminate ~1 from the second equation in (1.7), we obtain 
an equation for 

D_* [(K, - co-l) p1 + Los,1 = (&-'/as),, po’sl 
whose general solution is 

p~=C(K,--$--l(l+Xa)-‘/.exp[-j ” ] lb0 - no - h 

- C=C(h)= jl/ifh%xp [ u,_d;_k] [(~),po’s,-D-*(L,s,)]dh+Cl 

(1.10) 

where Cl is an arbitrary constant. 
Formulas (1.8)-(1.10) give a general solution in the first approximation for the case 

of a right-propagating rarefaction wave in the zeroth approximation.We can similarly determine 
the solution for the left-propagating rarefaction wave. These solutions are essentially 
simplified if we use relationships (1.4) for the zeroth approximation. Indeed, for the centred 
rarefaction wave we have the equality 

exp [- j$]=c, 

Using this equality in combination with (1.4), we transform formulas (1.8)-(1.10) (and the 
corresponding formulas for the left wave) and obtain the general solution in the first cpproxi- 
mation for the rarefaction wave in the form 

where the upper sign corresponds to a left-propagating rarefaction wave and the lower sign to 
the right-propagating wave; the parameters with subscript 0 are defined by (1.4); C, and C, 
are arbitrary COnStantS- 

We have thus obtained an analytical expression for the general solution in the first 
approximation both in the constant flow region and in the rarefaction wave region. Note that, 
in the first case, the general solution is determined apart from three arbitrary constants and 
in the second case apart from two constants. 

When solving the classical Riemann problem, the entire flow region is divided into a 
number of subregions separated from one another by parameter discontinuity surfaces. Each 
subregion is characterized either by constant flow or by a rarefaction wave. The general 
solution in these subregions is known: it is described either by (1.6) or by (1.8)-(1.11). 
Therefore, the solution of the generalized Riemann problem has been constructed, but only 
apart from a number of arbitrary constants (616, depending on the particular problem). 
The values of these constants should be determined by analysing the relationships on the par- 
ameter discontinuity surfaces. In the next section we will show that in the first approxi- 
mation a complete analytical solution is obtained for the generalized Riemann problem, i.e., 
we determine all the constants and also the discontinuity trajectories in the r, t plane. 

2. In the zeroth approximation with respect to I.3 (the classical case), the discon- 
tinuity breaks up into a contact surface with right- and left-adjacent constant flow regions. 
These constant-flow regions are separated from unperturbed regions by a shock wave, or by a 
rarefaction wave fan, or finally by a weak discontinuity. We assume that the wave picture 
is determined by the classical case, i.e., if initially the decay of the discontinuity 
produces a shock wave, say, then the shock wave persists over some finite time interval. 
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Consider the region lying on one side of the contact discontinuity (on the left or on 
the right). We will show that in this region the solution of the generalized Riemann problem 
is determined apart from one arbitrary constant. 

To fix our ideas, let us consider the left region. Introduce a double index for the 
parameters of the medium: the second index identifies the order of the approximation and the 
first index identifies the subregion where the solution is sought (1 for the unperturbed 
region, 2 for the rarefaction wave and 3 for the constant flow adjacent to the contact surface: 
see Fig.1). Thus, for instance, the pressure in the rarefaction wave is written in the form 

Pr = Pm (V f @P,l (V + 0 (W The discontinuity surfaces are also indexed: 1 and 2 are the 

characteristics bounding the rarefaction wave and 3 is the contact surface (Fig.1). In the 

case of a shock wave or a weak discontinuity, region 2 disappears and trajectories 1 and 2 

merge into one. 
The equations of the trajectories of these discon- 

tinuities are represented in the form hi = A,, 1m h,,O + 0 (P), 
l=1,2,3. Then their velocities are Di = hi, -t_ 211,,8+ 0((P). 

We assume that the solution of the problem in the 
zeroth approximation (the parameters with subscript 0) is 
known /3/. Arbitrary constants in qeneral solutions for 
regions 1, 2, 3 will be determined from "matching" con- 
ditions on the discontinuity surfaces. 

Fig.1 

Assume that the initial parameter distribution on the 
left and on the right of the discontinuity is qiven in its 
neighbourhood in the form of a series in powers of 0: 

h=---03, U = U,o + U,,R + 0 (V (2.1) 

p = p10 +- PI,8 -+- 0 (F), s = s10 i- S,,B + 0 (0%) 

The general solution in region 1 is given by formulas (1.6). Using the condition for 

this solution to be "matchedU with the initial values (2.1), specifically 

lim url (h) = U,,, lim pn (h) = P,,, lim .srr (h) = S,, 
L.--m h---m h---m 

we can determine the arbitrary constants and write the solution in region 1 in the form 

Ull = (I + W”~ [(u10 - h) u,, + P,,lp,,l (2.2) 

If relationships (2.1) are a representation of the initial values on the right of the 
contact discontinuity (x> 0), then by matching the general solution (1.6) with the initial 

values on the line 1\.=+00 we similarly determine the first-approximation solution for 
the unperturbed region on the right: 

The solution in the unperturbed region is thus completely determined. 
Now consider the "matching" of this solution with the solution in region 3. We have to 

consider three cases, when these regions are separated by a shock wave, a weak discontinuity, 

and a rarefaction wave. 

Shock wave. On the shock wave h = h,(8) we have the Rankine-Hugoniot conditions 

f%v3 = m,, pa + mluQ = I,, 'l,v,' + h, = H, (2.3) 

where vg = D1 - usr h, is the enthalpy and ml9 1, and H, are the mass, momentum, and energy 
fluxes, determined from the parameter values ahead of the wave (in reqion 1). 

Substituting expansions of the form (1.4) into (2.3) and considering the first approxi- 
mation in 0, we obtain a system of linear equations for the parameter values in.region 3 on 
the shock wave: 

(2.4) 
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Omitting the fairly complex procedure for solving this system, we will merely present 
the final result: the values of the first-approximation parameters in region 3 on the shock 
wave front (h = h,,) are represented in the form 

where %I, urr and prr are the values of the first-approximation parameters in the unper- 
turbed zone (2.2) for h=h,,. 

Substituting the parameter values on the shock wave (2.5) in the general solution for 
region 3 (1.61, we can determine the constants and thus find the solution in the zone adj,acent 
to the contact surface in the shock wave case. Omitting the intermediate steps, we will give 
the final result: the first approximation in the region between the shock wave and the contact 
discontinuity has the form 

(2.7) 

(2.8) 

The constant 6' in (2.7) equals 2h,,, i.e., it is equal to the coefficient of 6 in the 
expansion of the shock wave velocity D, in powers of 0. This constant is arbitrary. Thus, 
the first-approximation solution as a whole in the region to the left of the contact dis- 
continuity for the shock-wave case is described by formulas 12.71-12.8) and has exactly one 
arbitrary constant. 

Weak discontinuity. In this case the shock wave degenerates into a characteristic on 
which all the parameters are equal. Using the condition of equality for the first-approxi- 
mation parameters and noting that the values on the characteristics in the unperturbed zone 
are known ((2.2) for h = So) and the general solution in the region behind the character- 
istic is given by formulas (1.61, we can write a system of linear equations for the three 
arbitrary constants in the general solution. The rank of the matrix of this system is 2, so 
that we can only find two constants and therefore the solution in region 3 can be obtained 
apart from one constant. This solution may be represented in the form (2.7), as for the shock 
wave case, but the corresponding functions are different: 

U,&) = ~I~~)~~~(~~~), U*(h) = "$Z$ (2.9) 

PI 0") = 'pl (V Pll Mv p2 (V = %Ja @) 

S,P") = hl~~ll@lOL %P") = 0 
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The curvature of the characteristic in the first approximation is described by the 
relation 

%,, = %'2 ian @I,) + aen &r~~l 

Rarefaction wave. In this region, the entire set of solutions is defined by two 
arbitrary constants. "Matching" of two solutions on the first characteristic - the solution 
in the unperturbed region and the solution in the shock wave region - produces the following 
conditions in the first approximation: 

(2.10) 

From these three equations we can find two arbitrary constants &,C, in formulas (1.11) 
and the value of h,r characterizing the curvature of the first characteristic of the rare- 
faction wave. Omitting the intermediate steps, we qive the final result: the first approxi- 
mation in the rarefaction wave is described by the formulas 

(2.11) 

and the curvature of the first characteristic is given by 

Here all quantities with the subscript 20 are functions of h satisfying the relationships 
for the left centred wave (1.5) and s = -i as in (2.9). 

The solution in region 3 adjacent to the contact discontinuity is described by formulas 
(1.6) with three arbitrary constants. These constants are determined from the condition for 
this solution to be "matched" with solution (2.11) on the second characteristic: 

Seeing that on the left characteristic I. =&I, we have caOuQl - paI = 0, which follows 
directly from (1.61, we obtain from (2.13) the ratio that characterizes the curvature of the 
second characteristic in the first approximation: 

Two relationships remain for three constants. Therefore, for a rarefaction wave, the 
solution in region 3 has one arbitrary constant. After reduction, this solution can be 
represented in the form (2.7) with the functions 

(2.14) 

Thus, the solution in region 3 adjacent to the contact discontinuity on the left side 
has the form (2.71 and (2.8) if there is a shock wave on the left of the contact discontinuity, 
(2.9) if there is a weak discontinuity, and (2.14) if there is a rarefaction wave. This sol- 
ution is determined apart from one arbitrary constant. The same conclusion is reached also 
if we consider the region on the right of the contact discontinuity. All the formulas 
obtained in Sect.2 remain true if we take s = 1. 

Denote by Cl and c, constants that determine the solutions on the left and on the right 
of the contact discontinuity, respectively. To find these constants, we apply the equality 
of velocities and pressures on the contact surface, which to a first approximation has the 
form 
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u31 (---h3o) = us1 (Sh33)7 Pa1 t--h,,) = pa1 (+h,,) 

Substituting in these relationships the solutions (2.7) in the regions adjacent to the 
contact discontinuity, we obtain a system of equations for the constants cl and C,: 

u,i + W,I = u,,+ c,u,,, p,z+ ctp,* = P,,+c,P,, 

where the subscript t denotes the values of the corresponding functions for h+__hao and 
the subscript r denotes those for h+ $-ha,. Solving this system, we obtain 

c 
I 

= ru11 p,, -- [PiI uar c = Wll pa, -IPII u,, 
~*zp*1.---3,p,z ’ I- uazpa, - ~,rPaz (2.15) 

[V,l = U,, - un, LP,l = PI, - PII 

which thus determines the complete solution of the generalized Riemann problem. 
The curvature of the contact discontinuity in the first approximation is given by 

3. Let us establish the forms of the functions II,, LO, 88 occurring in the first-approxi- 
mation formulas (1.11) of the general solution for the rarefaction wave in a medium with a 
binomial equation of state 

where P* = Y-‘p&“, Y. p*, c* are some constants. An ideal gas is a special case with (C+ =O). 
Introducing the entropy s (more exactly, some function of the entropy), we can represent 

the density p, the velocity of sound a, and the specific internal energy e as functions of 
s and the pressure p: 

e (p, s) = ,“,*; 7 fP + P*f-“T - * 

P (P* 4 = s (P + P*)“Y, a (P, 4 = v-r (P + p*)“-“V/S 

The formulas defining the solution in the region of the centred rarefaction wave for a 
medium with a binomial equation of state have the form 

a(h) = J$ [F(U,--h)-t+p] (3.2) 

11 &I = la (4 t- J., p (?kf = (pl + p*) Ia (h)la,l*~~(~-1) - Pr 

where ml* Pr and a1 are the parameters of the background against which the wave propagates; 
the upper sign corresponds to a wave propagating to the left and the lower sign to a wave 
propagating to the right. 

Substituting 13.1) and (3.2) into (1.11). we obtain 

4. Using the relationships obtained above, let us consider the variation of the velocity 
of a steady shock wave moving through a gas at rest with the parameters 
at some point 

plO, pIO if, starting 
(x = 0), the density ahead of the wave starts varying in a manner which locally 

has the form 
PI0 (s) = PlO "r &or + 0 V) 

This is obviously a special case of our problem, with a weak discontinuity on the left 
of the contact discontinuity and a shock wave on the right of the contact discontinuity. The 
constant C, in (2.151, 
is given by 

which in this case determines the variation of the shock wave velocity, 

Substituting U,, U,, PI 
reduction, 

and Pz from (2.6) into this ratio, we obtain, after some 
that the acceleration acquired by the shock wave on passing through the point z = 0 

can be represented in the form 
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a,,,=-&$‘, Fz Mso(2yM1,~+1-~)-(~--1)(M1,‘--1)1 
MS, (2yM1,~ 4. 1 - 11) + ZM,,* r- Y - 1 

where Ml0 is the Mach number of the shock wave, Mao is the Mach number behind the wave 
front. We can show that F>O for Ml,> 1. Therefore the sign of aa,, is minus the sign 
of Rio, i.e., if the density ahead of the wave increases, the shock wave decelerates, and con- 
versely. The absolute value of the acceleration increases as the square of M,,. 

5. In conclusion we note the following. The problem of the breakup of an ordinary 
discontinuity plays an important role in numerical methods of the mechanics of continuous 
media. In particular, its solution is used to construct finite-difference schemes for the 
numerical integration of the unsteady equations of gas dynamics (so-called Godunov-type 

schemes /3/j. The result is a numerical scheme of first-order approximation, which leads to 
certain errors in numerical calculations. The analytical solution of the generalized Riemann 
problem obtained in this paper may be used to improve the order of approximation of the 

Godunov scheme if the piecewise-constant approximation is replaced by a piecewise-linear 
approximation. 
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BODIES OF FINITE THICKNESS AT 

THE APPROACH STREAM* 

Supersonic planar flow round a symmetric tapered body is considered for 
which, at each point, the angle of inclination of the wall is less than 
the limiting angle for the shock polar corresponding to the approach 
stream. It is shown that states of flow with the formation of both an 
attached shock wave (SW) of the strong family and a detached SW with 
subsequent subsonic flow between the shock wave, the body and the sonic 
line are impossible at any stream velocities. In essence, the results 
obtained by Nikol'skii /l/ are transferred to the case of an arbitrary 
Mach number of the approach stream. 

The impossibility of flow round a finite wedge with the formation of an attached SW of 
the strong family has been proved when substantial simplifying assumptions are made in /2/. 
The problem has been considered in /l/ in a general formulation under the sole assumption 
that there are no local supersonic zones and closed stream lines in the subsonic flow domain 
between the SW, the body and the sonic line. 

In this paper, the proof is based on a monotonic change in the angle of inclination of 
the velocity vector along lines of constant pressure (isobars). This fact, which is valid in 
the case of-vortex flowsl has been established previously in /l/ and the analogous result for 
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